高中数学说课稿汇编八篇
作为一名无私奉献的老师,很有必要精心设计一份说课稿,说课稿有助于学生理解并掌握系统的知识。说课稿要怎么写呢?以下是小编收集整理的高中数学说课稿8篇,仅供参考,欢迎大家阅读。
高中数学说课稿 篇1各位老师:
大家好!
我叫***,来自**。我说课的题目是《简单随机抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
"简单随机抽样"是"随机抽样"的基础,"随机抽样"又是"统计学"的基础,因此,在"统计学"中,"简单随机抽样"是基础的基础。在初中学生已学过相关概念,如"抽样""总体"、"个体"、"样本"、"样本容量"等,具有一定基础,新教材把"统计"这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生学习增加了难度。
2教学的重点和难点
重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)
难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性
二、教学目标分析
1.知识与技能目标:
正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
2.过程与方法目标:
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3.情感,态度和价值观目标
通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性
三、教学方法与手段分析
为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学,并对学生渗透"从特殊到一般"的学习方法,由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,也能大大提高学生的学习兴趣。
四、教学过程分析
(一)设置情境,提出问题
例1:请问下列调查是"普查"还是"抽样"调查?
A、一锅水饺的味道B、旅客上飞机前的安全检查
c、一批炮弹的杀伤半径D、一批彩电的质量情况
E、美国总统的民意支持率
学生讨论后,教师指出生活中处处有"抽样"
「设计意图」生活中处处有"抽样"调查,明确学习"抽样"的必要性。
(二)主动探究,构建新知
例2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?
A、在班级12名班委名单中逐个抽查5位同学进行背诵
B、在班级45名同学中逐一抽查10位同学进行背诵
先让学生分析、选择B后,师生一起归纳其特征:
(1)不放回逐一抽样,
(2)抽样有代表性(个体被抽到可能性相等),学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题--(简单随机)抽样及其定义。
「设计意图」例2从正面分析简单随机抽样的科学性、公平性,突出"等可能性"特征。这是突破教学难点的重要环节之一。
例3我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。
先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳"抽签法"步骤:
(1)编号制签
(2)搅拌均匀
(3)逐个不放回抽取n次。教师板书上面步骤。
「设计意图」在自主探究,合作交流中构建新知,体验"抽签法"的公平性,从而突破难点,突出重点。
请一位同学说说例2采用"抽签法"的实施步骤。
「设计意图」
1、反馈练习,落实知识点,突出重点。
2、体会"抽签法"具有"简单、易行"的优点。
〈屏幕出示〉
例4、假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验
提问:这道题适合用抽签法吗?
让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:
(1)编号
(2)在随机数表上确定起始位置
(3)取数。教师板书上面步骤。
请一位同学说说例2采用"随机数表法"的实施步骤。
「设计意图」
1、体会随机数表法的科学性
2、体会随机数表法的优越性:避免制签、搅拌。
3、反馈练习,落实知识点,突出重点。
㈢课堂小结:
1.简单随机抽样及其两种方法
2.两种方法的操作步骤
(采用问答形式)
「设计意图」通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。
㈣布置作业
课本练习2、3
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
高中数学说课稿 篇2一、说教材:
1、地位、作用和特点:
《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。
本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以
是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是;
特点之二是: 。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:A、B、C
(2)能力目标:A、B、C
(3)德育目标:A、B
教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
……此处隐藏20157个字……,想象坐标位置,-----)
设计意图:
遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策.此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力.
(八)布置课外作业
1.书面作业:习题4.3第3、4、5题.
2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况.
教学设计说明
一、对本节教材的理解
三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.
星星之火,可以燎原.
直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排.定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础.
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.
二、教学法加工
数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力.
在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习.本课例属第一课时.
教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解.本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力.
将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了.
教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法.后者更能突出函数内涵,揭示三角函数本质.本课例采用后者组织教学.
三、教学过程分析(见穿插在教案中的设计意图).
高中数学说课稿 篇8【教材分析】
1、本节教材的地位与作用
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。
2、教学重点
会求闭区间上连续开区间上可导的函数的最值。
3、教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。
4、教学关键
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。
【教学目标】
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
1、知识和技能目标
(1)理解函数的最值与极值的区别和联系。
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。
2、过程和方法目标
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值。
3、情感和价值目标
(1)认识事物之间的的区别和联系。
(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。
(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。
【教法选择】
根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。
本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。
【学法指导】
对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。
【教学过程】
本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。