精选高中数学说课稿合集五篇
作为一名人民教师,常常需要准备说课稿,借助说课稿我们可以快速提升自己的教学能力。怎样写说课稿才更能起到其作用呢?下面是小编为大家收集的高中数学说课稿5篇,欢迎阅读与收藏。
高中数学说课稿 篇1一、教材分析:
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识与能力:
(1)了解柱体、锥体、台体的表面积.
(2)能用公式求柱体、锥体、台体的表面积。
(3)培养学生空间想象能力和思维能力
过程与方法:
让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。
情感、态度与价值观:
通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。
3.重点,难点以及确定依据:
本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
教学重点:柱,锥,台的表面积公式的推导
教学难点:柱,锥,台展开图与空间几何体的转化
二、教法分析
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
三.学情分析
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
四、教学过程分析
(1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性
(2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。
(3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。
(4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(5)例题及练习,见学案。
(6)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
(7)小结。让学生总结本节课的收获。老师适时总结归纳。
高中数学说课稿 篇2抛物线焦点性质的探索(说课)
一、教材分析
1 教材的地位与作用 “抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。
2 教学目的 全日制普通高级中学《数学教学大纲》第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本·必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以《几何画板》为教学工具与学习工具,设计了一堂《抛物线焦点性质的探索》,具体目标如下:
(1) 知识目标:了解焦点的有关性质;并掌握这些性质的证明方法;体会数形结合思想与分类讨论思想在解决解析几何题中的指导作用
(2) 能力目标:使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。
(3) 情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。
3 教学内容、重点、难点及关键 本节安排两节课,
第一节课:主要内容是利用《几何画板》探索抛物线的有关性质;
第二节课:证明第一节所得到的有关性质。
重点:
(1)如何利用《几何画板》探索、发现抛物线焦点的性质;
(2)如何证明这些性质。
难点;
(1)如何利用《几何画板》探索、发现抛物线焦点的性质;
(2)如何证明这些性质。
二、教学策略及教法设计
学生在网络教室(每人一机),其中装有《几何画板》软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。
三、网络教学环境设计
……此处隐藏2841个字……本节在教材中的地位和作用:本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。
2. 教学目标确定:
(1)能力训练要求
①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。
②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。
(2)德育渗透目标
①培养学生善于通过观察分析实物形状到归纳其性质的能力。
②提高学生对事物的感性认识到理性认识的能力。
③培养学生“理论源于实践,用于实践”的观点。
3. 教学重点、难点确定:
重 点:1.棱锥的截面性质定理 2.正棱锥的性质。
难 点:培养学生善于比较,从比较中发现事物与事物的区别。
二、说教学方法和手段
1、教法:
“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。
在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。
2、教学手段:
根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。
三、说学法:
这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。
四、 学程序:
[复习引入新课]
1.棱柱的性质:
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面是平行四边形
2.几个重要的四棱柱:
平行六面体、直平行六面体、长方体、正方体
思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?
[讲授新课]
1、棱锥的基本概念
(1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念
(2).棱锥的表示方法、分类
2、棱锥的性质
(1). 截面性质定理:
如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。
证明:(略)
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥
的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。
(2).正棱锥的定义及基本性质:
正棱锥的定义:
①底面是正多边形
②顶点在底面的射影是底面的中心
①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;
②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;
棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形
引申:
①正棱锥的侧棱与底面所成的角都相等;
②正棱锥的侧面与底面所成的二面角相等;
(3)正棱锥的各元素间的关系
下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。
引申:
①观察图中三棱锥S-OBM的侧面三角形状有何特点?
(可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)
②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。
(课后思考题)
[例题分析]
例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )
A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥
(答案:D)
例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。
﹙解析及图略﹚
例3.已知正四棱锥的棱长和底面边长均为a,求:
(1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦
﹙解析及图略﹚
[课堂练习]
1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。
﹙解析及图略﹚
2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。
﹙解析及图略﹚
[课堂小结]
一:棱锥的基本概念及表示、分类
二:棱锥的性质
截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。
2.正棱锥的定义及基本性质
正棱锥的定义:
①底面是正多边形
②顶点在底面的射影是底面的中心
(1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高
相等,它们叫做正棱锥的斜高;
(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形
引申: ①正棱锥的侧棱与底面所成的角都相等;
②正棱锥的侧面与底面所成的二面角相等;
③正棱锥中各元素间的关系
[课后作业]
1:课本P52 习题9.8 : 2、 4
2:课时训练:训练一